Optimal Dynamic Graphs for Video Content Analysis
نویسندگان
چکیده
This study addresses the problem of learning the optimal structure of a dynamic graphical model for video content analysis given sparse data. We propose a Completed Likelihood AIC (CL-AIC) scoring function that differs from existing ones by optimising explicitly both the explanation and prediction capabilities of a model simultaneously. We demonstrate that CL-AIC is superior to existing scoring functions including BIC, AIC and ICL in building dynamic graph models for video content analysis.
منابع مشابه
Optimal 2-D hierarchical content-based mesh design and update for object-based video
-Representation of video objects using hierarchical 2D content-based meshes for accurate tracking and level of detail (LOD) rendering have been previously proposed, where a simple suboptimal hierarchical mesh design algorithm was employed. However, it was concluded that the performance of the tracking and rendering very much depends on how well each level of the hierarchical mesh structure fits...
متن کاملOptimising dynamic graphical models for video content analysis
A key problem in video content analysis using dynamic graphical models is to learn a suitable model structure given observed visual data. We propose a completed likelihood AIC (CL-AIC) scoring function for solving the problem. CL-AIC differs from existing scoring functions in that it aims to optimise explicitly both the explanation and prediction capabilities of a model simultaneously. CL-AIC i...
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the ...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کامل